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The potential contribution to the viscosity in liquids is calculated from the pair-correlation function,
which may be obtained by solving the extended Kirkwood-Smoluchowski (KS) equation. A secondary
boundary condition near the hard core (» =17) for the excess pair probability current density in the rel-
ative pair space is derived rigorously and applied to the extended KS equation. The intermolecular po-
tential consists of hard core plus arbitrary soft tail. The viscosity coefficients calculated in this work
prove to be essentially functions of the square root of the shear rate rather than functions of the shear
rate itself. We give the explicit representation for the viscosity coefficients in the case of hard spheres.
The shear thinning of the shear viscosity is recovered. The viscosity of the normal pressure difference

Lpw—p,y) is found to be positive.

The normal pressure difference of the

second kind

%[pzz - %( Dxx Py, )] vanishes in the first-order perturbation calculation with respect to the deformation.

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The Kirkwood-Smoluchowski (KS) equation for the
pair-correlation function (PCF) may be extended to quite
a wide range of shear rate for the case of special geometry
of the plane Couette flow [1,2]. Some interesting results
of the analytic treatment of the extended KS equation
were displayed in Ref. [2], where the boundary condition
(BC) near the hard core should be corrected. In this arti-
cle we first calculate the PCF by treating the BC near the
hard core correctly, and obtain the potential contribution
to the viscosity coefficients by using the PCF calculated.
For hard spheres especially, we show the viscosity
coefficients explicitly both in analytic and in graphic rep-
resentation. We recover the shear thinning of shear
viscosity and the positivity of the viscosity of normal
pressure difference 3(p,, —p,,), which are observed in the
molecular-dynamics simulations [3-6]. The viscosity
coeflicients calculated in this article are found to be func-
tions of the square root of the shear rate, more exactly,
the square root of the rotation rate, rather than functions
of the shear rate itself. The replacement of the repulsive
part of intermolecular potential by a hard core is very
effective in dense fluids [7,8] and provides us with a con-
venient BC at the hard core. The effective diameter of
the hard core may depend upon density and temperature
but in this work we have the hard-sphere diameter fixed
at a reference length o.

The extended KS equation for the PCF g in the
Couette flow reads

%g +u-Vg+V-j=0,
(1)

T g Tk T

[—Vw—(mo?*/2)ulg ,

where @=du/dt, and w= —kgT Ing,, is the potential of
mean force in equilibrium in the configurational relative
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pair space. The flow velocity u is given by u=r-y, where
we assume the following shear-rate tensor in the plane
Couette flow:

y=Vu= (2)

o ©
o o o
© O o

with the uniform shear rate y =9du,/dy. The relative
coordinate vector r is in the unit of the reference length
o, V=98/0r, r=0?/D, D=2kgT /¢, and ky and { are
the Boltzmann’s constant and the isotropic friction
coefficient, respectively.

In Eq. (1) j is the excess pair probability current densi-
ty, where it is to be noted that the mean force —Vw is
subtracted by the inertial force in the relative pair space
(ma?/2)a, and a molecule at r feels the effective force
—Vw—(mo?/2)a. For homogeneous simple fluids Eq.
(1) may be derived from the Fokker-Planck (FP) equation
for pair-particle distribution function f®(r,,v,r;,v,),
which depends upon both position and velocity [9,10].
One of the important approximations in deriving Eq. (1)
is in the following: When the FP equation is multiplied
by the peculiar velocity V;=v;—u (i =1,2) and integrat-
ed in the six-dimensional velocity space (v,v,), we
neglect (V,V,f?’) and the off-diagonal elements of
(V,V,f?) for i=1 or 2, where the angular bracket
denotes the integration over the six-dimensional velocity
space. Since u-Vu=0 in the Couette flow, we can put
u=09Ju/dt +u-Vu=du/dt. That the nonlinear term u-Vu
vanishes not by the linearization but by the geometrical
property of the Couette flow implies the applicability of
Eq. (1) to a wide range of shear rate, even when we drop
the term u in the stationary case. If we put
8 =8cqt8ey° ¥, where g, is the equilibrium PCF, and
substitute it into Eq. (1), we obtain in the Couette flow
the following equation for y:
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where ¢ is defined by g =g éf, A is the Laplace operator,
the prime denotes the differentiation with respect to 7,
and ¢ is the azimuthal angle. The function V(r) is

defined by
Ja. @

The shear-rate tensor ¥ given by Eq. (2) is decomposed
into its deformation and its rotation part in Eq. (3):

2
Vir)=— q”+7q’

Y=Yat7,- (5)

We may represent the deformation and the rotation rate
tensor more generally by introducing their own scalar pa-
rameters ¥, and y,, respectively:

010 0 10
Ya=vqa|l O O, y,=—v,|—1 0 0] . (6)
000 0 00

We have ¥, =v,=7v /2 in the plane Couette flow.
We assume the intermolecular potential to be given by

v(r)=uv,(r)+uv,(r), 7)

where v, is the hard-sphere potential: v, becomes infinite
for » =1 and zero otherwise. The second term v, is any
additional soft tail. For the fluid system of hard spheres
we have to put v, =0.

In the next section we develop the perturbation theory
with respect to the deformation rate and obtain an equa-
tion for the first-order deviation from equilibrium. In
Sec. III we introduce the BC’s at the hard core (r=1) and
at infinity in the relative pair space, and derive the BC
near the hard core (r=1%). In Sec. IV, by using these
BC’s, we calculate the deviation of PCF from equilibri-
um, which is again applied to obtaining the explicit ex-
pressions of viscosity coefficients in Sec. V.

II. PERTURBATION EXPANSION
IN THE DEFORMATION RATE

In the previous works [10,11] the deviation of PCF
from equilibrium was calculated in the first order of the
shear rate itself. But the rotation and the deformation
tensor are physically independent quantities and we may
expand the function ¥ in terms of the deformation rate
Y4 (multiplied by the relaxation-time coefficient 7) only,
as

b= P, (rya)" . (8)

n=1

N\
Since the reference state is rotating in this perturbation
expansion with respect to the deformation rate, the un-
perturbed term 4, should contain the effect of centripetal
acceleration. But in the first-order perturbation calcula-
tion in y, this zeroth-order coefficient i, has been put a

posteriori to zero. The reason is stated in the following.
The effect of centripetal acceleration on the PCF is
caused by the inertial term (mo?/2)u in Eq. (1). When
the shear-rate tensor is given by Egs. (5,6), the accelera-
tion & may be written as follows: a=(y%—y2)(x,y,0),
where the relations dr/dt=(3/dt+u-0/9r)r=u and
Ya'¥,tv,vqe=0 are used. So the inertial term is in
second order of the deformation rate and has no effect on
the first-order solution in the deformation rate. The part
of PCF independent of the deformation rate looks like
exp[—w /(kpT)+mo?yX(x?+y?)/(4kyT)], where the
potential due to the centripetal acceleration has been
added. But this effect from the centripetal acceleration is
cancelled by the second-order effect of deformation in the
inertial term, for u=(y%—y2)(x,»,0)=0 in the station-
ary plane Couette flow (y;=v,). In this sense, the first-
order solution for the distortion of PCF in this article is
not exactly in first order of the deformation rate but still
includes the second-order effect of the inertial term.
We again expand ¥, in spherical harmonics:

U(r0.6)= S S RE(NYPMG6,4), O

m=—o 12]2m]|
where the symmetry of the Couette flow
Y,(r,0,6+m7)=1,(r,0,4) has been used, ie,

R\b2m~=D=0 for all integer m. Substitution of (8) and (9)
into (3) leads to a system of the coupled differential equa-
tions for the radial coefficients R">™. For the stationary
situation, i.e., 9y /9t =9y ,/0t=09y,/0t=0, we obtain

the following equation for the first-order coefficient
R{h2m.

L+ V() +k2 R 2™
=(—iV'32m/15)8,5(8,,,—8,, —1)rg’ ,  (10)
where

Lo @ 29 1U+D

or? ror k2’ (an

k,, =explis,, m/4]|12m7y,|'* for 7y,>0, and s,
=sgn(m). The relation 4xy/r’=—iV'327/15[Y3(6,¢)
—Y;2(6,4)] has been used in transforming the second
term in the angular brackets in the right-hand side (rhs)
of Eq. (3). If q(r)=gééz(r)=0 for r <1, the quantities,
such as ¢g(1)/¢q(1)=0/0 and 1/q(1)=1/0, cannot be
well defined. So we assume g(r) to be infinitesimally
small but nonzero for r=1 so that ¢(1)/q(1)=1,
1/q(1)—1/q(1)=0, and so on. To this end we may con-
sider that g(r) can be parametrized in the region r =1, as
q(r)=gq(r,e)—0forr <1, as e—0.

The function V(r) is singular at =1 and may be
decomposed as

Vin=V,(rn+vr), (12)
where V,(r)=V(r)—V(r), V(r)=—(g"+2g'/r)/q, and
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g(1)=q(1") and g(r)=gq(r) for r>1. We neglect ¥ in
our approximation, but we take the singular term V, ex-
actly in Eq. (10) to obtain

(L2 +V (r)+ k7 IR
=(—iV'327/15)8, 5(8,,,—8,, _)rg" . (13)

The function V| vanishes for r > 1, but the singular effect
at r =1 plays an important role via the BC near the hard
core in solving the differential equation (13), which we
discuss in the following section.

III. BOUNDARY CONDITIONS AND REDUCTION
OF THE SYSTEM OF EQUATIONS

We may consider the following BC’s for the excess pair
probability current density j:

j (=0 atr=1, (14)
lim j,(r)=0, (15)

where the subscript » stands for the radial component.
The BC (14) comes from the impossibility of a pair of
hard cores overlapping and the BC (15) implies the sto-
chastic independence of a pair of molecules infinitely dis-
tant from each other. From the above BC’s (14) and (15)
we can write the following BC’s in terms of R {*?™ as

(R /q),-,=0, (16)
(R /q1,_ =0, 17)

where we have used the fact that geq=q2=1 at r=oo.
We also assume the continuity of g /g, at r=1, which
implies

(R /q), -, =[R{?*™ /q] _,+ . (18)

But the first derivative of g /8eq» (8/8cq) meed not be
continuous at =1, and we may write generally

R(11,2m) _ R(]I,Zm)
q q r=1
n o (L,2m)
+ lim % l Ri
n— q q’
R(ll,Zm)
- , (19)
q r=1

where R{"*™(1)=R{»?>"(1%) and R\"*™ (r)=R 2™ (r)
for r>1. It is to be noted that lim, . [g(r)/g(r)]"
guarantees the ‘“‘absolute” zero at r=1 (while, as men-
tioned before, g /g itself is infinitesimally small but
nonzero at » =1) and is equal to unity for > 1.

In order to derive a BC near the hard core it is more
convenient to rearrange Eq. (13) with respect to the func-
tion R {*>™ /q as

R(I,Zm) R(I,Zm) !
gL+ k2 —V(r)] ‘q +2q" |
32 172
=—i —lg”— 8,2(8m1—8m _1)rg’ . (20)

Under the continuity condition of R {*?>™ /g at r=1 (18)
and the representation of its first derivative (19), we can
integrate Eq. (20) from =1 to r =17, which results in

R(ll,Zm) R(]I,Zm)
q r=1% q r=1
32 172
==i| 50| 858,18, ), @)

where we have taken the limit n — oo after integration. If
we require the BC (16), which is sufficient for the radial
component of the excess pair probability current density
to vanish at r =1, as stated in (14), we can obtain a BC at
r=17% from the result above, as

1/2

32T | (8= 1) . (22)

(,2m) ’ —
[R} /Q],:1+ ! 15

With the BC’s (22) and (17) we may integrate the
differential equation (13) in the range 1 <r < o excluding
the singular point » =1, where the effect of the singularity
at r=1 is included in the BC (22). It should be noticed
that the BC (22) is inhomogeneous if /=2 and m ==1,
and homogeneous otherwise.

For /52 or m#=*1, Eq. (13) becomes homogeneous
and the differential operator L,”’ becomes Hermitian un-
der the pertaining homogeneous mixed boundary condi-
tions (22) and (17) at r=1% and o, respectively. Since
the constant k2 =i2m7y, in the left-hand side (lhs) of
Eq. (13) is purely imaginary while the eigenvalues of the
Hermitian operator L,”’ are real, the solutions of the
homogeneous equations for /72 or m7 %1 become trivi-
al, i.e.,

R{"*™ =0 for I#2 or m#=*1 . 23)

Thus it is enough to examine Eq. (13) for /=2 and
m ==x1 only, which can be rewritten for r > 1 explicitly
as

172

32m rq’ (24)

(L2 4 ke IR 2™ = —im | =

for /=2 and m ==1, where the singular term V; does
not appear since V| =0 for r > 1, but its singular effect at
r=1 is included in the BC (22). Equation (24) is to be
solved under the following BC’s at r=1" and infinity:

172

32w | (25)

(2,2m) ’ = —7
[Rl ” /q]r=1+ im 15

[R>*™ /q],_,=0, (26)

which can be deduced from (22) and (17) for /=2 and
m ==1, respectively.
The BC (25) is inhomogeneous and we have in this case
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not only an inhomogeneous solution but also a nontrivial
homogeneous one:

R(12,2m):R{(2,2m)+R{1(2,2m) , 27
where the superscripts I and H denote the inhomogene-
ous and the homogeneous solutions, respectively. For the
sake of convenience we require that the inhomogeneous
solution R{22m) satisfies the following homogeneous
BC’s at r=1" and infinity:

[R 1(2,2m) /q]

=0, (28)

r=17"

[R{**™ /q],=.,=0, (29)
where m ==%1. The homogeneous solution R #22™) con
sequently has to satisfy the following BC’s at »r=1" and
infinity:

1/2
327

15

i lh£(3“m)/2](kmr)/q(r) ]

/

and h” is the spherical Hankel function of the first
(j=1) or second (j =2) kind.

Under the homogeneous BC’s (28) and (29), the
differential operator L'? in Eq. (24) is Hermitian and it is
convenient to represent the inhomogeneous solution by
making use of the Green’s function, which satisfies the
following equation:

[LP+k21G

ar

(rlp)=r"28(r—p), (33)

where 8(r —p) is the Dirac delta function. The Green’s
function G, consists of a pair of independent homogene-
ous solutions of (33) 4,, and B,,, which satisfy the fol-
lowing BC’s corresponding to the BC’s (29) and (28), re-
spectively:

(4,791, -
(B, /q]

=0, (34)

(35)

r= 1+
The solutions for 4,, and B,, pertaining to the BC’s (34)
and (35) are given by, irrespective of the proportional
|

1/2
. 32 ,
R{‘Z’z’"’=fp>le(r|P) l—zm ‘—1?7 pq’(p) }Pzd

H.-M. KOO
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172
[RH(ZZm)/q]’ 1+——im 312_577 R (30)
[RT**™ /q],- ., =0, (31)

where m=x1, so that R{»*™=R{Z»2" +R{{22m),
which is stated in Eq. (27), may satisfy the BC’s (25) and
(26) at r=1% and oo, respectively.
1V. FIRST-ORDER DISTORTION OF PCF
IN THE DEFORMATION

The only homogeneous solution of Eq. {24) that
satisfies the BC’s (30) and (31) is
R{I(Z’ZM)(Y)szh5(3_m)/2](kmr) , (32)
where
r=1% ’
[
coefficients,
A, (N=hG=m72(k_r), (36)
B, (r)=hV(k,r)+C, h¥(k,r), (37
where C,, = —C.V/C'? and
=g (nYk, r)/q(r) (38)
or r=1"+

for j=1,2. We may represent the Green’s function G,
in terms of 4,, and B,, as

B,(r)A,,(p) for 1<r=p

G, (rlp)= A,,(r)B,(p) for 1<p=r,

(39)

Wi

where W, /p*=A{B,,(r), A, (r)},= =P 42/
k,,)CL3~ "')/2]/C(2) is the Wronskian of B,), fand A,

leen the Green’s function explicitly, we can obtain
the inhomogeneous solution of Eq. (24) as

172
—_ _im 327 3, 3,
w15 | (A0 Bee’aeldpt B [ A (p)p' (pp] (40)
where 4,, and B,, are given by (36) and (37), respectively. If we use the relation
fh£(3 1/2) 3~l(p dp—r3h£(3 1)/2] (k r)q(r)_h£(3 t)/2](k )q(l )+S[(3_’)/2](r;km), 41)
where t =+1 and
itk
S((3—t)/2](r;km)=£_flre ! mp(kmp2+itp)q(p)dp , (42)
m
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we can rewrite Eq. (40) as

172
1

2

327

RI(Z,Zm): —
! 15

1689

[—2img(11)R[3=m 2k r)/Cl3—m)/2]

+mk,, (CORP (k,r)—CPREY (k,, 1)} SIE™m 205k, ) /CL3m72)
+mk,, h5V (k,,r)SPr;k,, ) —mk, h? (k,,r)S(r;k, )], 43)

where we have used the following relation:

LR (k)= CPR ()= 25

(44)

The first-order radial solution R {%%™(r) consists of the homogeneous and the inhomogeneous one given explicitly by

Eq. (32) and (43), respectively. Thus we finally obtain
R{@2m =RI2m) | g H2,2m)

1/2
327

15

1
2

[mkm {C,‘,,”h(zz’(kmr)—c,‘,,”h gl)(kmr)}s[(Z;—m)/Z]( OO;km )/C'[rIS—m)/Z]

+mk,, hiV(k,,r)SP(r;k,, ) —mk,, kP (k,,r)SV(r;k,)], (45)

in the range of r > 1.

Substitution of the trivial homogeneous radial solu-
tions for /52 or m %=1, given by (23), into the rhs of Eq.
(9) for n =1, leads to the first-order solution simplified as

Y(r,0,6)= 3 R>>™(r)Y2"(6,4) . (46)
m==1

As assumed in (18), R‘lz’z”’)/q(r) is continuous at r=1,
and the function R{»?™ /q(r), where R {>?™ is given by
(45) for r > 1, may be extended continuously to the point
r=1. Since R{>?(r) 1is the complex conjugate of
R{>~2(r), we can represent v, /q for r > 1 by substitut-
ing (45) into the above equation and by making use of the
continuation to r =1, as

172

27

15

Y(r,0,8)/q(r)=—

g(r)

XRe[{F,(k,r)+F,(k,r)} Y2 (6,4)]
@7)

for r 2 1, where
Fl(k’r):k[c(l)h(zz)(kr)_C(Z)h(zl)(kr)]s(l)( oo;k)/C(l) ,
(48)
Fy(k,r)=khi"(kr)SP(r;k)—khP (kr)S'V(r;k), (49)

k=k,,, CP=CY, for j=1,2 and Re( - - -) denotes the
real part of (- --). It is to be noted that in obtaining the
solution (47) we neglected the soft term ¥ in Eq. (10),
where V=V,+ ¥, but took into account the singular
term V', exactly, which provided us with the boundary
condition at »=1" (22). By using the solution given by
(47) we calculate the viscosity coefficients in the following
section.

V. VISCOSITY COEFFICIENTS

We now calculate the viscosity coefficient of shear
pressure and those of normal pressure differences. We
consider only the potential contribution to these
coefficients, for in dense fluids they are predominant over
the kinetic contributions. First, we derive the general
representations for viscosity coefficients from the first-
order solution (47), and second, we apply them to the
hard-sphere fluid.

In homogeneous fluids the symmetric traceless pres-
sure tensor is represented in terms of the nonequilibrium
PCF [10,11] as

- n’ —1, 3
Puv_—rtsf’u*’v" v'(r)g(r)d-r , (50)
where n is the number of molecules per volume o3, the
Greek subscripts u,v denote the Cartesian components,
and a,*b, represents the symmetric traceless tensor of
second rank defined by :

a,*b,=3(a,b,+a,b,)—38,ab (51)
with the Kronecker delta symbol §,,. When we substi-
tute the first-order approximation for the PCF,
8 =8cq 84> ¥,7y 4, into the rhs of Eq. (50), the isotropic
contribution vanishes for symmetry reasons and we ob-
tain the following representation for the pressure tensor
in the first-order approximation with respect to the defor-
mation rate:
2
n - ’
Puv="" 7‘371/‘, f Fu¥T ¥ ) (r)geq(r)
X{z,b(r)/gé‘;z(r)}d3r . (52)

We introduce the following three quantities of pressure
tensor:
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P+=Dyy s P-=3psx—Dy)
Xy 2 X yy (53)

Po=3{Pez —3(Pxx TPy}

and thereby we define the corresponding viscosity
coefficients:

+

no = pg /Y . (54)

By making use of the expression for the pressure (52) and
the definitions (53) and (54) we can represent the viscosity
coefficients as

1sin?0sin’¢
1sin?6 cos2¢
1(3cos’0—1)
{¢,(r,0,¢)/q(r)}r?

2
Cintred NN

Xrv'(r)geq(r

H.-M. KOO 47

where the relations y,=v/2 and q=g.{* have been
used, and the integral is to be performed in polar coordi-
nates.

A. For the intermolecular potential of hard core
plus additional soft tail

Since the first-order solution v,(7,0,¢) obtained in (47)
is proportional to exp(i2¢), the third integral in the r.h.s.
of the equation above vanishes, which means

17=0 (56)

in the first-order approximation with respect to the defor-
mation rate. But 7,70 in the second-order approxima-
tion, which implies 7, is the second-order effect of the de-
formation. Substitution of the previous result for ¥/g,

Xsinfdrd6d¢ , (55) which is given by (47), into Eq. (55) leads to
|
_ 2w’ Re ! f r3'(r)g . (M{F (k,r)+F,(k,r)} /g(r)dr (57)
M+ 1503 —1]Jdi15r<w € e LA 4 )
The function g, is discontinuous at r=1 because of the hard-sphere potential v,. But we assume the function y
defined by
y(r)EeU"(rV(k”T)geq(r) , (58)

to be continuous, provided that the additional tail v, (7) of the intermolecular potential is finite for » > 0, which is true in

the case of the Percus-Yevick equation for hard spheres [12]. Since exp{ —(1/kgT )v,(r)}

spectively, we can transform vy, (r)g¢,(r), as

—0,(N/(kpT)

vy(r)geq(r)=—kpT{e

=Qorlforr<lorr>1,re-

Vy(r)=—kpgTy(r)6(r—1) . (59)

On making use of the equation above, the expression (57) becomes

27k TTn?
1503

where the relations v =v, +v,, y (r)=q2(r),

N+

I
[1 Ige‘gz(mFl(k,l)

21r7-n

y(1)=geq(1 ), and F,(k,1)

F(k,r)+Fy(k,r)}dr|,  (60)

]f rug(r)geg? (nf

=0 have been used. It is to be noticed that the

singular effect at » =1 is extracted in the first term in the rhs of Eq. (60). The function F,(k, 1) is given by

1 E (K)+E,(k)
Fi(k,1)=2iS""(w0;k)/C'V= - , T (61)
3[6+(1/kgT)f(1T)J(1—ik)—[8+(1/kgT)f(1 )k +2ik

E\(k)=4k? [ “e™ =Dk +ir)dr

=—12i— 12k +4ik?, (62)
Ey(k)=4k> [ “e* " V(kr2+ir) (gl (0 —1)dr (63)

[
where k =|7y|'%exp(im/4) and f(r)=kzT(3/dr)[Ing.,,]  we can take the limit of zero shear rate after integration.

is the mean force at r in the relative pair space. The rela-
tion C'Vh P (k)—CPhi" (k)=2i/k has been substituted
into the definition of F, stated in Eq. (48) and the expres-
sion has been simplified. In the numerator in the rhs of
(61) the integral has been decomposed into two parts.

Since Re(ik)=—|7y|'2/v2<0 for nonvanishing shear
rate and g.,(7)—1 for r — o, the integrals E, and E, ex-
ist for 0. In order to obtain the Newtonian viscosity,

If we assume the density correlation (g.,—1) to decay
exponentially, which seems to be true for most approxi-
mations, the integrand of the integral £, may be expand-
ed for small shear rates in power series of k as

Ez(k)——4k2f (1—ik +1(r2— Dk + - - -}

X (gl (r)—1}dr , (64)
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for |7y| << 1. Thus E,~k? for |ry| <<1, and from (61),
(62), and (64) we obtain the following Newtonian shear
viscosity coefficient:

8wk TTn? 2rath)
17+(0+): 1: 3 £ ql +7"+ ’ (65)
o +
6+ f(Q1T)

where 0" means the zero-shear-rate limit and 7', is the
contribution from the second term of (60), which is small
in dense fluids compared to the first one.

B. Viscosity coefficients for hard spheres

Since there is no additional tail (v, =0) for hard-sphere
potential, the second term in the rhs of Eq. (60) vanishes
in this case and we obtain the following useful representa-
tion for the viscosity coefficients of hard spheres:

2ky Tn?
Hs()=""2" __ Re
N+ Y 150_3

where the superscript HS in 1!IS denotes the hard sphere.
For hard spheres the second term of (65) vanishes and the
Newtonian viscosity becomes

8mky TTn?

1503

,  (66)

i
[1 ]g;q”(l*)Fl(k,l)

gl2(1%)

700 t)= (67)

1 +
6+ kBTf(l )

We need the functional form of the equilibrium PCF
8cq in order to calculate the integral E,. To this end we
use the following approximation for the density correla-
tion function s(r)=g.,(r)—1, which was previously cal-
culated in Refs. [1,2]:

a —
__e(r 1)/&
r

spyu(r)=2Re (68)

for r > 1, where a and £ are complex functions of n,, the
number of molecules per molecular volume. The sub-
script PYH means the Percus-Yevick equation for hard
spheres. It is noted that the approximation spyy differs
in the global shape from the exact solution of the Percus-

- 1 1 1

0.2 0.4 0.6 0.8
tcy

FIG. 1. Shear viscosity coefficient for hard spheres in the
unit of the Enskog’s viscosity 7z. t¢ is the Boltzmann mean
free time. n, =0.4628.

—_—
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FIG. 2. Viscosity coefficient of the normal pressure difference
(Pxx —Pyy)/2 for hard spheres. Its value is represented in the
unit of the Enskog’s viscosity 7z, and ¢¢ is the Boltzmann mean
free time. n, =0.4628.

Yevick equation for hard spheres [12] but it gives the
correct values of compressibility and pressure as the ex-
act solution. The advantage of the approximate represen-
tation (68) is that it is analytic in the whole range of » > 1
while the exact solution of the Percus-Yevick equation is
piecewise analytic. Its graphical representation is given
in Refs. [1,2]. By making use of the approximation (68)
we can calculate the viscosity coefficients given by (66)
numerically. The relaxation-time coefficient 7 introduced
phenomenologically in this work may be determined by
comparing our Newtonian viscosity for hard spheres with
that from the molecular-dynamics simulations for hard
spheres. We made use of the Erpenbeck’s results for hard
spheres [6,13,14]. For the number of molecules per
molecular volume n, E%n‘(a/Z)z‘n =0.4628, we have
7==11.3t;, where t. is the Boltzmann mean free time:

c=4no*V/mkyT/m )~'. The dependence of the

scaled viscosity coefficients n!15/n; on the scaled shear
rate toy are shown in Figs. 1 and 2, where 71 is the En-
skog value for the Newtonian viscosity: 7g
=3nmDp{1.016[1 +2g.,(17)]*+(768/25m)n%g2, (1))
and Dp=kpTtc/(2m) is the Boltzmann self-diffusion
constant. The value of the mean force at r=1%, f(17),
in the representation (66) has been replaced by that from
the exact solution of the Percus-Yevick equation for hard
spheres. Here we find again the shear thinning of the
shear viscosity which was observed in computer experi-
ments [3-6] and other theories [15]. The viscosity
coefficient for the normal pressure difference
M- =4(pxx —Pyy) /v is positive, which is also true for the
molecular-dynamics simulation [16]. As mentioned be-
fore, 74 is zero in the first-order perturbation calculation
with respect to the deformation.

VI. DISCUSSION

In the previous work [2] the PCF was already calculat-
ed by solving the extended KS equation. But the com-
plete derivation of the boundary condition near the hard
core (r=1%) has been achieved only in this work. Thus
the secondary boundary condition near the hard core in
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Refs. [1,2] should be replaced by that derived in this
work. The most important point of departure in this
work is to decompose the shear-rate tensor into the rota-
tion and the deformation part and take only the deforma-
tion tensor as perturbation. This is different from the
conventional calculations of nonequilibrium PCF [10,11],
where the shear-rate tensor itself is taken as perturbation
parameter. The next important point is to take into ac-
count the singular effect at the hard core (r =1) exactly in
the approximate calculation, i.e., to take V, exactly in
(10) and (12), and derive the correct boundary condition
near the hard core (r=17), which is stated in (22). It is
strongly desired to develop the second-order perturbation
theory in the deformation rate so that we may obtain a
nontrivial value for 1y and hopefully better results for 7
and n_. The behaviors of the viscosity coefficients de-
rived agree qualitatively well with the molecular-
dynamics simulation results, i.e., the shear thinning [3-6]
and the positivity of the viscosity coefficient for normal
pressure difference [16]. The viscosity coefficients derived
here are essentially functions of V/27y,=V'ry (rather
than 7y itself), where y, is the rotation rate, i.e., func-
tions of the square root of the rotation rate. This may be
related to the nonanalytic behavior of the viscosity
coeflicients at least in a limited range of shear rate. The

dependence of shear viscosity on the square root of shear
rate seems conditional: It has something to do with the
competition between the dimensionless shear rate 7y and
the quantity A=6+f(11)/(kzT). We may obtain the
term of square root of shear rate, when A <<ty < |£| 2,
where £ is the complex correlation length in the unit of
reference length o. This point is to be investigated in
later works. A more correct knowledge about the equi-
librium PCF is desired to investigate the behavior of the
viscosity coefficients in the relationship with the thermo-
dynamic properties of more realistic model fluids.
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